
HIPRA

Gut health on nursery

Ramon Jordà Casadevall Global Product Manager

What is Gut health?

Veterinary

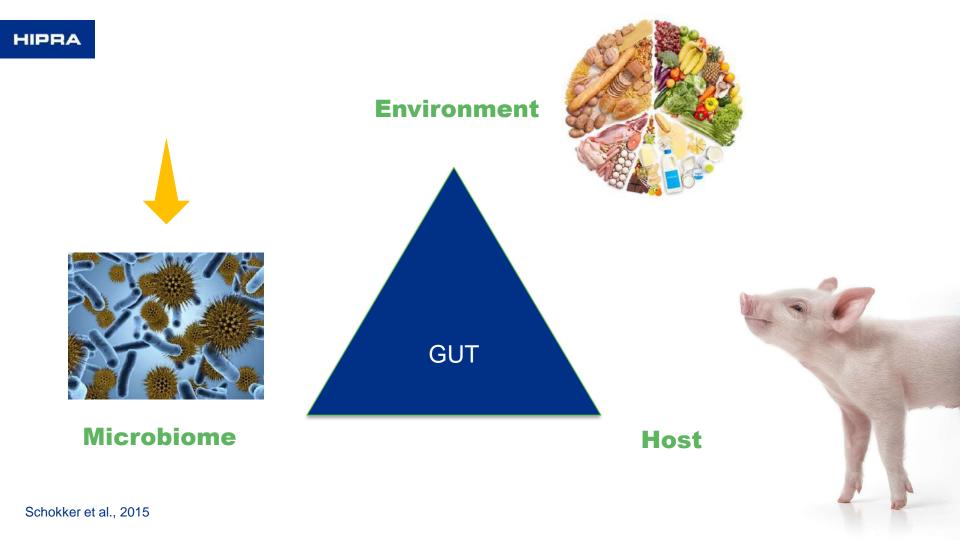
Nutricionst

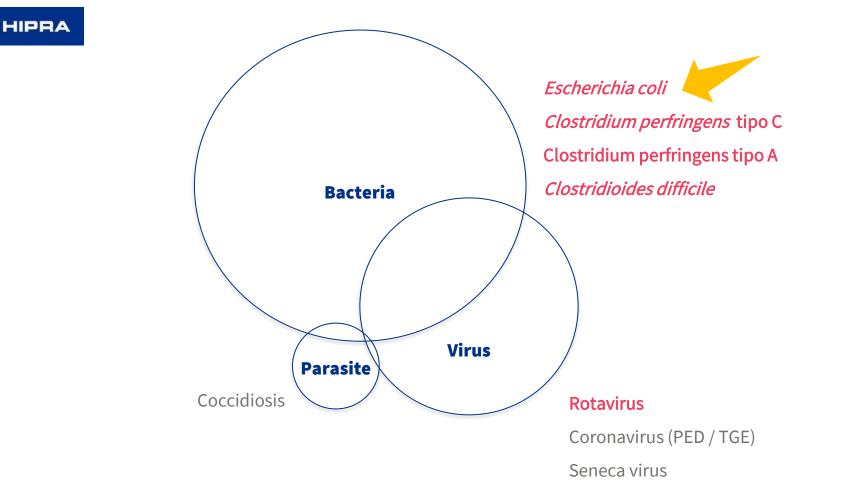
"The absence of digestive pathologies that reduce the development of the animal in question" "State of the animal in which the digestive functions develop normally"

Scientist

"More knowledge is needed to narrow the terms well"

"Let the piglets eat and fatten well"


Farmer



What is Gut Health?

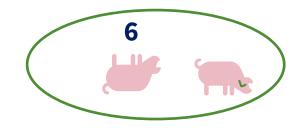
"A steady state where the microbiome and intestinal tract exist in symbiotic balance and where animal welfare and performance are not limited by gut dysfunction"

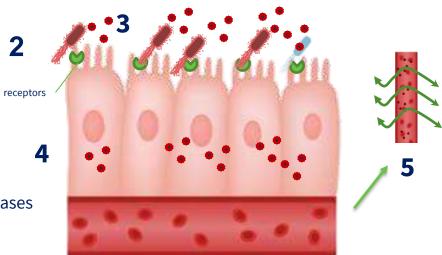
Pietro Celi

Enterotoxigenic E.coli (ETEC) and Verotoxigenic E.coli (VTEC)

- Worldwide problems, endemic manifestation or outbreaks
- Appearance: First days after weaning > introduction to fattening (rare)

ETEC: Post-weaning diarrhoea


- Clinical signs:
 - **Low**: < 3% mortality + ↓ weight gain
 - **Severe:** > 25% mortality + $\downarrow \downarrow$ weight gain


VTEC: Oedema disease

- Signs:
 - Clinical
 - Sudden death
 - Eyelid oedema, incordination, breathing problems, death
 - Mild subcutaneous oedema, pruritus and recovery
 - Cronhical
 - ↓ weight gain, neurological clinical signs, muscular atrophy
 - Subclinical
 - \downarrow weight gain, secondary problems

VTEC pathogenesis

- 1. Ingestion of VTEC
- 2. Small bowel colonization (receptors in jejunum & ileum)
- ETEC:F18 depends on the age (+15 days) → 3 weeks ↑
 Slow progession of the disease (5-7 días)
 End of lactation and post-weaning
- 3. Verotoxin replication & production (Vt2e/Stx2e)
- 4. Transport of toxins into blood stream
- 5. Capillary involvement: degenerative angiopathy → increases vascular permeability and epithelial necrosis
- 6. Oedema, ataxia and death

Pathogenesis ETEC and VTEC

Mixed infections are common

ETEC + VTEC (or ETEC with VTEC in the same bacterium)

• ETEC + VTEC + other pathogens (*Clostridium*, *Salmonella*, *Lawsonia*, *Brachyspira*,...)

ORIGINAL RESEARCH published: 05 November 2018 doi: 10.3389/micb.2018.02650

Swine Enteric Colibacillosis in Spain: Pathogenic Potential of *mcr-1* ST10 and ST131 *E. coli* Isolates

Epidemiological study of 499 *E. coli* isolated from outbreaks of <u>enteric colibacillosis with diarrhea</u> in Spain

		Samples	%
	ETEC	277	57,5 %
Increased	aEPEC	156	32,4 %
pathogenesis	 VTEC/ETEC	33	6,8 %
	VTEC	15	3,2 %

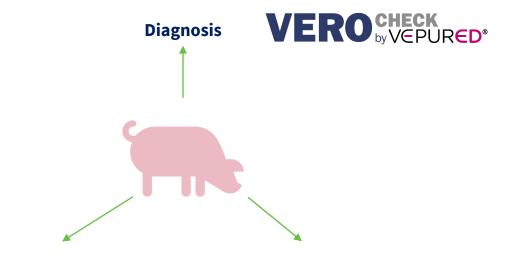
Risk factors

ED and PWD Risk Factors

Aetiology		Risk factors			
Disease	<i>E. coli</i> patotipo	Host	Environment		
Oedema Disease VTEC/STEC:F18	 Some resistant piglets lack F18 (ED + PWD) or F4 (PWD) receptor 	 Transport Mixing of animals Dietary changes 			
Post-weaning diarrhoea	ETEC:F4, F18, ETEC:AIDA, EPEC, different pathotypes <i>E.</i> <i>coli</i>	 Stress Loss of calostral antibodies Early weaning High growth animals (ED) 	 Low level of milk or other animal products Some ingredients (ex: soy) Presence of other infections such as PRRSv, rotavirus, Salmonella 		

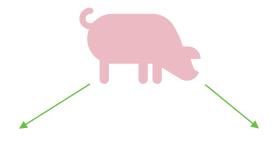
ZnO ban in 2022

Table 1- Zinc oxide: 2 different uses - 2 different situations.

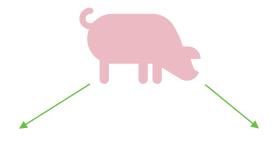

Intestinal balance should be more precise

	ZnO as a feed additive	ZnO as a veterinary medicinal product (VMP)
EU agency	European Food Safety Authority (EFSA)	European Medicines Agency (EMA)
Legislation	Regulation (EC) No 1831/2003 on additives for use in animal nutrition	Directive 2001/82/EC on veterinary medicinal products + Regulation (EC) No 726/2004
Levels	Max. total 150ppm of zinc (from ZnO and other sources)	Normal dosage ca. 2500ppm
Ban?	No! There is no indication that ZnO will be banned as a feed additive.	Yes! Marketing authorisations for ZnO- based VMPs will be withdrawn the across EU by June 2022.

HIPRA


Control strategies

Reduce pathogenic E. coli



Reduce pathogenic E. coli

Reduce pathogenic E. coli

HIPRA

Nutrition vs. ETEC and VTEC

Reduction of pathogenic *E.coli* and increase of resistance

Water

• Additives: Organic and inorganic

Ingredients (diet)

- Highly digestive
- Milk proteins
- Protein reduction (<18%)
- Intake restriction
- Fiber increase
- Flour vs pellets
- Calcium reduction 10% (buffer capacity)

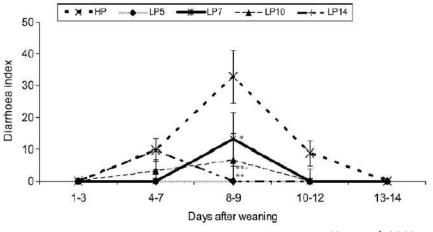
Additives

- Organic and inorganic acids
- Essential oils
- ZnO boosted
- Anitmicrobial peptides
- Hydrolyzed plasma
- Beta-glucans
- Probiotics
- Prebiotics
- Oligosaccharides
- Enzymes

Nutrition against ETEC and VTEC

Redution of protein (<18% / <180g/kg)

Effects


• Reduction of proteolytic bacteria

How?

- Use highly digestible proteins: plasma, lactic proteins
- Complement with syntetic amino acids following the ideal AA profile

HP = high protein (24,3%)

LP5 = low protein (17,3%) fed for 5 d after weaning LP7 = low protein (17,3%) fed for 7 d after weaning LP10 = low protein (17,3%) fed for 10 d after weaning LP14 = low protein (17,3%) fed for 14 d after weaning

Heo et al. 2008

HIPRA

🔮 animals

Article

Protein Content in the Diet Influences Growth and Diarrhea in Weaning Piglets

Rosa Marchetti ^{1,*}, Valerio Faeti ^{1,*}, Maurizio Gallo ², Massimo Pindo ³, Davide Bochicchio ¹, Luca Buttazzoni ⁴ and Giacinto Della Casa ¹

2023

Table 2. Growth phases based on piglet body weight and overall crude protein percentage in the diet, depending on growth phase and protein level.

Growth Phase	Protein Level (% CP)	
	High	Low
From the start of weaning to 15 kg (Period I and II)	18.5	16.5
From 15 kg to the end of the experiment (Period III)	16.5	14.5

Table 6. Influence of dietary protein level on the diarrhea score summations. The percentages of the scores are shown in parentheses with respect to the total score, referring both to the protein level in the period and to the whole period.

	D	iarrhea Score Sun	imations ¹	
	Protein	n Level		Significance of the Difference
Growth period	High	Low	Total in the Period	
Period I	91 (85.0)	16 (15.0)	107 (45.7)	
Period II	5 (83.3)	1 (16.7)	6 (2.6)	
Total (Period I + Period II)	96 (85.0)	17 (15.0)	113 (48.3)	p < 0.01
Desired III	F1 (F0 F)	50 (11.2)	101 (51 7)	NS
Total score	167 (71.4)	67 (28.6)	234	51320320

¹ Scores were calculated as reported in Table 4. NS: not significant.

Table 5. Average value of selected growth parameters during the experiment and significance of the difference between high-protein and low-protein diets (n = 6 per treatment).

	Protein	n Level	
Growth Parameter	High	Low	Significance of the Difference
Initial body weight (kg)	7.80	7.77	NS
From weaning to change of housing			
Period [1	17.2	15.6	NS
Period II ²	29.8	28.0	NS
Period I + Period II	23.5	21.8	NS
Average daily gain (g)			
Period I	377	313	p < 0.01
Period II	599	593	NS
Period I + Period II	479	440	p < 0.05
Average daily feed intake (g)			
Period I	585	536	NS
Period II	1181	1138	NS
Period I + Period II	857	810	NS
Feed conversion ratio (-/-)			
Period I	1.55	1.72	p < 0.01
Period II	1.97	1.92	NS
Period I + Period II	1.79	1.84	p < 0.05
From change of housing to the end of post-weaning (period III) ³			22 - 2010 B
rectage daily barr (6)			1.1
Average daily feed intake (g)	952	952	NS
Feed conversion ratio (-/-)	2.11	2.18	NS
Final body weight (kg)	40.7	38.5	NS

* Period 1: From the start of the experiment until the change of deft. * Period 1: From the change of det until the change of housing. Period 1: From the start of the experiment until the change of housing.³ Period II: From the change of housing until the end of the experiment.

Nutrition against ETEC and VTEC

Benefits?

Barba-Vidal et al. 2018

Table 1 Pig in vivo scientific works evaluating the use of probiotics against digestive bacterial pathogens (Escherichia coli and Salmonella sp.)

Live micro-organism that when administered in adequate amounts confer benefits to the host (FAO/WHO 2001)

Probiotics

A lot of research on reducing ETEC, VTEC and other pathogens

	Probiotic	Pathogen	Animals	37	
References	Strain, dose per pig and dosing method	Strain and dose per pig	Days old: weaning → Inoculation	Benefits	Main results
De Cupere et al. (1992)	 (a) Bacillus cereus var. Toyoi (1 × 10⁹ cfwg) (b) Lactabacillus spp. (7.5 × 10⁷ cfwg) (c) Streptococcus faecium (5.6 × 10⁸ cfwg) Inducied in feed 	Escherichia coli 0141 K85 (10 ⁹ cfu)	28 → 30	No	No improvements on clinical symptoms or mortality. No improvements on fecal <i>E. coli</i> shedding
Shu <i>et al.</i> (2001)	Bilicobacterium lactis HN019 (10 ⁶ cfu/day) Oral administration	E. coli sp.	21 → natural acquisition	Yes	Reduced diarrhea scores and fecal shedding of <i>E. coli</i> . Improved animal performance. Increased T-cell differentiation and pathogen-specific antibody titers
Bhandari <i>et al.</i> (2008)	<i>Bacillus subtilis</i> (6 × 10 ⁸ cfu <i>l</i> kg) Included in feed	<i>E. coli</i> K88 (4×10^{10} cfu)	17 →24	Yes	Reduced diarrhea scores and mortality. Modulated microbial diversity.
Lessard et al. (2009)	(a) Pediococcus acidilactici (b) Saccharomyces cerevisiae (c) P. acidilactici + S. cerevisiae Lactation (10 ^o du). Oral administration Weaning (10 ^o du/kg). Included in feed	E. coli 0149: F4 K88 (10 ⁹ cfu)	21 → 49 + 50 + 51	Yes	Before challenge: (a) increased T-cell differentiation. After challenge: (a, b, c) Reduced bacterial translocation. (b) Increased ileal immunoglobulins
Zhang <i>et al</i> . (2010)	Lactobacillus rhamnosus GG (10 ¹¹ clu/day) Oral administration	ETEC 149: K91, K88ac (10 ¹⁰ clu)	18 → 26	Yes	Reduced diarrhea scores and fecal coliform shedding. Modulated microbial diversity. Increased jejunal immunoglobulins. Modulated systemic inflammatory cytokines
Bhandari <i>et al.</i> (2010)	E. coli (4.5×10^{12} cfu) Included in feed (daily mix) ¹	E. coli K88 (1.2×10 ¹¹ cfu)	21 →27	Yes	Reduced ETEC in ileum. Improved animal performance
Wang et al. (2009)	Lactobacillus iermentum 15007 (2 × 10 ⁹ cfu) Oral administration	<i>E. coli</i> K88ac (2×10 ⁰ cfu)	21 →21	Yes	Increased T-cell differentiation and ileum cytokine expression
Konstantinov et al. (2008)	Lactobacillus sobrius DSM 16698 (10 ¹⁰ cfu) Included in feed (daily mix) ¹	ETEC K88 0149 F4 (1.5×10 ¹⁰ cfu)	21 → 28	Yes	Reduced levels of ETEC in the ileum, improved performance and increased diarrhea
Krause <i>et al.</i> (2010)	E. coli $(1.5 \times 10^{11} \text{ cfu})$ Included in feed (daily mix) ¹	<i>E. coli</i> K88 (1.4×10^{10} cfu)	17 → 24	Yes	Increased animal performance and microbial diversity. Reduced diarrhea scores (in presence of raw potato starch)
Daudelin <i>et al.</i> (2011)	(a) Pediococcus acidilactici MA18/5 M (b) S. cerevisiae SB-CNCM I-1079 (c) P. acidilactici+S. cerevisiae Sows: gestation (3 × 10 ⁹ cfu) + lactation (6 × 10 ⁹ cfu). Included in feed (daily mix) ⁹ Piglets: lactation (1 × 10 ⁹ cfu). Oral administration Wearing: 2 × 10 ⁹ cfu/ka. Included in feed	ETEC 0149 F4 (5 × 10 ⁰ ďu)	21 →28	Yes	(a, b) Reduced ETEC attachment to intestinal mucosa. (a,c) Induced ileum cytokine expression
Trevisi <i>et al.</i> (2011)	L rhamnosus GG (6×10^9 cfu) Included in feed (daily mix) ¹	ETEC F4 (1.5 × 10 ¹⁰ cfu)	21 → 28	No	Reduced animal performance. Increased diarrhea scores. Reduced serum immunoglobulins. Tended to a worse histomorphology

Nutrition against ETEC and VTEC

Probiotics

Benefits?

Conclusions:

Effects: more articles describing beneficial effects with probiotics (>80%) compared to negative.

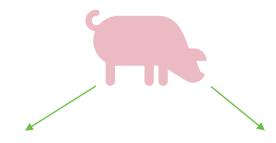
Against pathogens:

Days old: wearing → Ineculation Benefits Main results Febreaces. Strain, dose per pig and dosing method Strain and dose per pig De Capere et al. (1992) (a) Bacillus cereas var. Toyol (1 \times 10⁹ chaig) Escherichia coli 0141 K85 (10⁹ chaig) 28 \rightarrow 30 No No improvements on clinical symptons or mortality No improvements on fecal *E*. coll shedding Lactobacillus spp. (7.5 × 10¹ c (b) Lactobacillus spp. (7.5 × 10⁺ chulg)
 (c) Straptococccus Inactum (5.6 × 10⁺ chulg) included in ked Shu er al. (2001) Střísisbactevium factis HN019 (10⁴ cluiday) E. coli sp. Oral administration Yes Reduced cliamitea scores and fecal shedding of E. coli Inproved orarinea scores and fecal shedding of E. con. Improved animal performance. Increased T-cell differentiation and pathogen-specific antibody sites. Ehendari et al. (2008) Sacillus subtilis (6 × 10⁴ cluAc) E. coli K88 (4 × 10⁴⁰ clu) 17 → 24 Yes Reduced cliarthea scores and mortality. Modulated included in feed microbial chersity. Yes Belore challenge: (a) increased T-cell differentiation. After challenge: (a, b, c) Reduced bacterial Isouped in Need Lessard et al. (2009) (a) Performents additactiol E. coll 0149: F4 K38 (10⁹ cha) 21 → b) Saccharomycas cerevisiae 49 + 50 + 51 (c) P. acidilactici + S. cerevisiae sanslocation. (b) Increased likel immunoclobulin Lactation (10° cfu). Oral administration Diazober (110° Caling): Included In Bred Warning et al. (2010) Lactobucklis informations of Gi (16°¹¹ clukisy) ETEC 149: K91, K88ac (10¹⁶ clu) 18 → 26 Oral administration Yes Reduced clarifies scores and fecal coliform shedding Modulated microbial diversity, increased laiunal immunositobulins. Modulated systemic inflammator Ehandari et al. (2010) E. coli (4.5 × 10⁵⁰ du) E. coll K88 (1.2 × 10¹¹ ct.) 21 → 27 Yes Reduced ETEC in Ilours, Improved animal performance E. COV (43 × 10 ° CU) E. COV K88 (12 × 10 ° CU) 21 − 27 inclused in Sed (daily mix)³ Lactobacillus Armeetam (5007 (2 × 10⁸ cla) E. coli K88ac (2 × 10⁶ cla) 21 − 21 Wing et al. (2009) Yes Increased T-cell differentiation and lleum cytokine Oral administration Konstantinov et al. (actobacilius sobrius DSM 16698 (10¹⁰ ch.) ETEC K88 0149 F4 (1.5 × 10¹⁰ ch.) 21 → 28 Yer Reduced least of ETEC in the liners inserted E coll (1.5 × 10¹¹ clu) performance and increased diarrhea Yes increased animal performance and microbial diversity €. coll K88 (1.4 × 10¹⁰ ch) 17 → 24 Krause et al. (2010) included in feed (daily mix)¹ Reduced diarrhap scores (in presence of row potat starch) Yes (b, b) Reduced ETEC attachment to intestinal mucosa Daudelin et al. (2011) (a) Pediococcus add/lactic/ MA18/5 M ETEC 0149 F4 (5 × 10⁶ clu) 21 → 28 (a) Pediocreas admiratio MAI 87
 (b) S. cenerisiae SE-CNCM I-1079
 (c) P. addilactici+S. cenerisiae (a,c) Induced lieum cytokine expressio Sows: cestation (3 × 10⁹ clu) + loctation (5×10° clu). Included in feed (daily mix)¹ Piglets: lactation (1×10° clu). Oral administration Weaning: 2 × 10⁸ chu/kg, included in feed Travisi et al (2011) L mampsus GG 6 x 10° ctul ETEC F4 II.5 × 10¹⁶ chi 21 → 28 No Reduced animal performance. Increased diarte included in feed (daily mix) scores. Reduced serum immunoglobulins. Tended to a worse histomorphology

Pathopen

Animals

Table 1 Pigin viso scientific works walkating the use of probiotics against digestive bacterial pathopens (Escherichia coli and Salmonella s Probiotic


In most of the cases, the effects are positive, although they are quite "dicreet"

- Potential risks: some probiotics in animals with intestinal damage can suffer translocation pressure.
- **High variability**: probiotics may have a positive effect in some trials and not in others. Differences in diets, dosajes, genetics or management can influence

TAKE-AWAY

Probiotics can help BUT...

"Do not look to probiotics as a replacement for antibiotics, combine them with other nutritional solutions, management or vaccination strategies"

Reduce pathogenic E. coli

Management against ETEC and VTEC

Reduction of pathogenic *E.coli* patogénicos and increase of resistance

Water

• Quality control (regularly)

Hygiene

- Washing, desinfection and drying
 - Pen
 - Feeders and drinkers
 - Others: farm boots? toys?
- Sanitary break (+4 days)
- Lactation (animales menos contaminados)

Facilites and environment

- Walls and floors (avoid wind zones, humidity zones, etc.)
- Temperture
- Humidity
- Feeder and drinker space

Management

- All in/All out
- Late weaning
- Transport
- Group size (preaferable smaller groups)
- Density
- Stress
- Health control (vaccination)

Management ETEC and VTEC

Temperature

Low temperature

Reduces intestinal peristaltic activity and consequently increases bacterial colonization

Low temperaturas at weaning → more diarrhoea Diseases of Swine. Fairbrother & Nadeau 2019.

T°C fluctuations

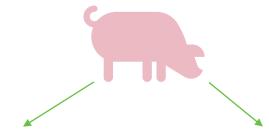
High fluctuation of T°C increases diarrohea

23.5 ± 3°C	23.5 ± 0,5°C
High DAW	Low DAW

Research | Open Access | Published: 18 June 2008

Risk factors for post-weaning diarrhoea on piglet producing farms in Finland

<u>Taina M Laine</u> [™], <u>Tapani Lyytikäinen</u>, <u>Maija Yliaho</u> & <u>Marjukka Anttila</u>


Acta Veterinaria Scandinavica 50, Article number: 21 (2008) | Cite this article

Variable	P-value
Temperature control: Automatic vs. Manual	0.03
Number of sows	0.02
Only 1 feeder	0.08

Automatic temperature control reduces risk of postweaning diarrhea

Strategies against ETEC and VTEC

Reduce pathogenic E. colis

Immunity against ETEC and VTEC

Reduction of pathogenic *E.coli* and increase of resistance

Vaccination

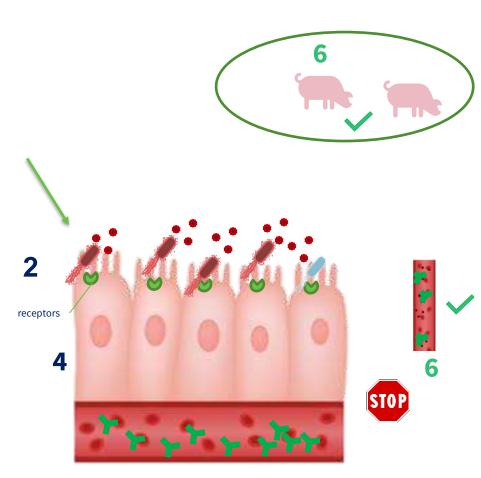
- Vaccination of sows (for neonatal diarrhoea. ex. F4(K88
- Oral vaccines E.coli non-virulent F4(K88) and F18 → Post-weaning diarrhea
- Toxoid vaccines against Vt2e (Stx2e) → Edema disease

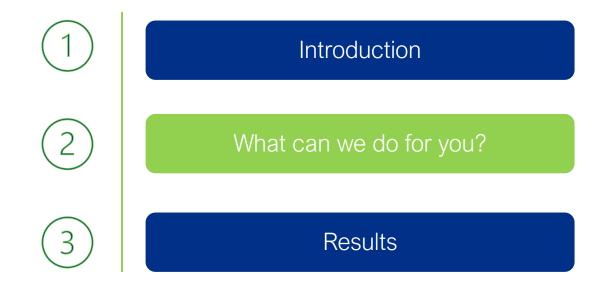
Oral antibodies

• Oral egg yolk powder with hens immunized against F4(K88) and F18

Genetic selection

• Animals resistant to F4(K88) and F18

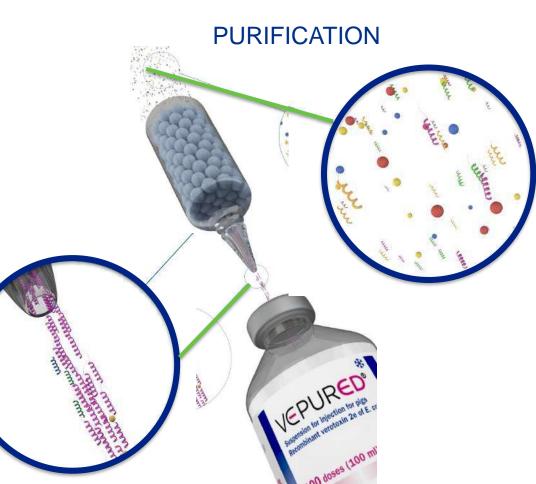

HIPBA Inmunity against VTEC


Vaccination to increase the resistance of the animals

1. Ingestion of VTEC

2. Small bowel colonization (receptors in jejunum & ileum)

- ETEC:F18 depends on age (+10 days?/+20 days?) ⊠ 3 weeks. ↑
- cause disease slowly (after 5-7 days)
- end-lactation and post-weaning
- 3. Verotoxin production (Vt2e/Stx2e)
- 4. Transport of toxins into circulation
- 5. Antibodies neutralize the toxin
- 6. NO capillary damage
- 6. Healthy piglets, WITHOUT edema or ataxias



VEPURED®

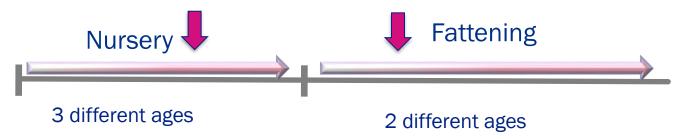
1 ml / IM – One dose From day 2 of life Proction until slaughterhouse Prevention of mortality Reduction of clinical signs

Intestinal integrity

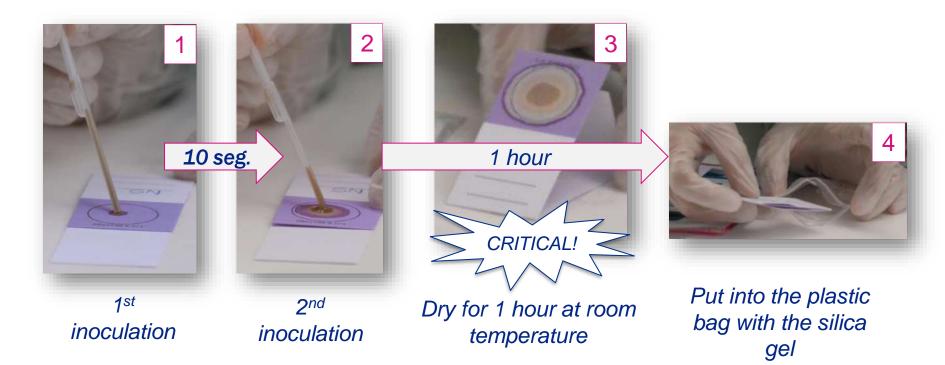
Maintaining intestinal integrity is key to avoiding possible primary or secondary processes that disrupt the intestinal balance

Post-weaning diarrhea Streptococcus suis problems Oedema problems

VERO CHECK by VEPURED[®]



Sampling moment


5 VEROCHECKS IN A PACK

FTA INOCULATION

RESULTS

	VT2e PCR-REAL TIME
6 Semanas 6S-1	POS ++ (Ct 33,5)
6 Semanas 6S-2	POS + (Ct 35,5)
9 Semanas 9S-1	NEG
9 Semanas 9S-2	NEG
9 Semanas 9S-3	POS + (Ct 38,1)

COMENTARIO

Valores de referencia para VT2e (Ct): POS < 38,5

- NEG: No se ha detectado DNA bacteriano
- POS (+): Se ha detectado DNA bacteriano en baja cantidad
- POS (++): Se ha detectado DNA bacteriano en moderada cantidad
- POS (+++): Se ha detectado DNA bacteriano en alta cantidad

DIAG. MOLECULAR

	VT2e PCR-REAL TIME
7 Semanas T2	POS ++ (Ct 33,7)
7 Semanas T2	POS ++ (Ct 34,8)
7 Semanas T2	POS + (Ct 35,5)
9 Semanas T1	POS +++ (Ct 29)
9 Semanas T1	POS +++ (Ct 27,6)
9 Semanas T1	POS +++ (Ct 29.7)

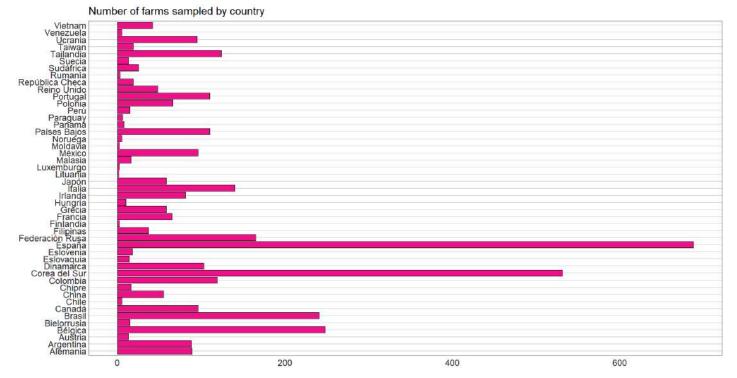
COMENTARIO

Valores de referencia para VT2e (Ct): POS < 38,5 NEG: No se ha detectado DNA bacteriano POS (+): Se ha detectado DNA bacteriano en baja cantidad POS (++): Se ha detectado DNA bacteriano en moderada cantidad POS (+++): Se ha detectado DNA bacteriano en alta cantidad

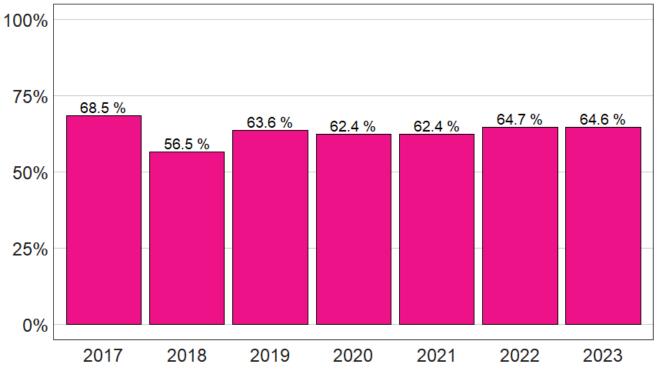
Prevalence of Verotoxin in Europe

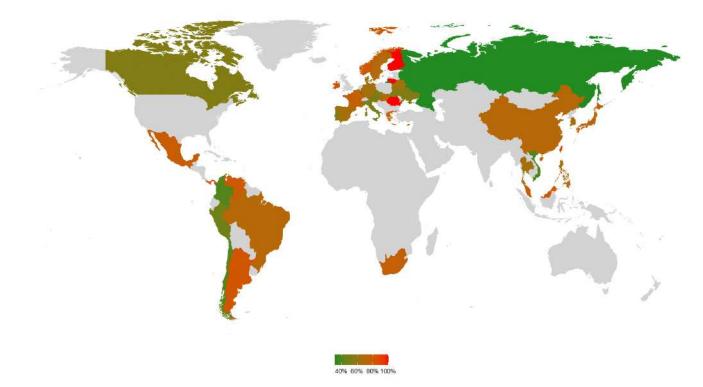
HIPRA

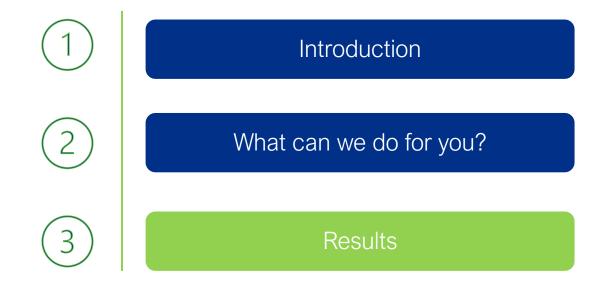
European screening reveals risk of Oedema Disease with the reduction of ZnO


Anne Strunz¹, Anni Andersen¹, Lola Tolstrup¹, Emili Barba² ¹ HIPRA Nordic (Denmark) ² HIPRA, Amer (Spain)

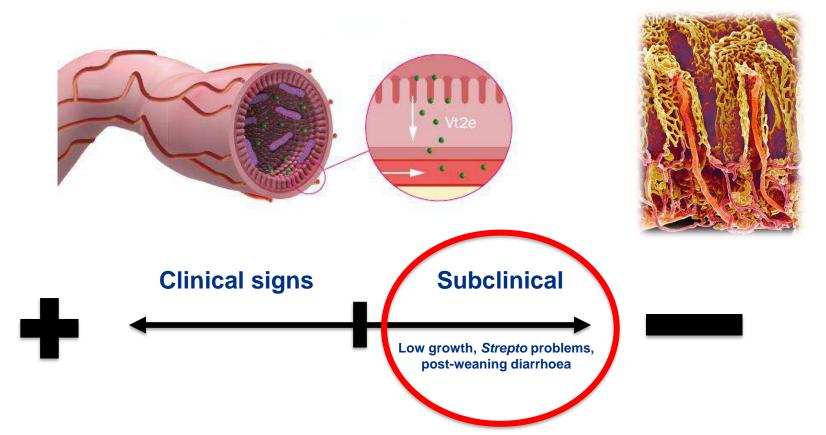
Corresponding author: anne.strunz@hipra.com




MONITORING VEROCHECK PCRs



Percentage of Vtx positive farms over time



% OF POSITIVE FARMS

The verotoxin effect is dose-dependent

Inmunity against VTEC

Vaccination to increase the resistance against VTEC

Trial on 4 commercial farms with oedema problems

Mortality

Farm	Treatment	Number of pigs (n)	Number of pigs that died due to Edema Disease (%)	
3	Placebo	120	7 (7)	- 1
	Vepured	121	0 (0)	
4	Placebo	180	6 (3.3)	
	Vepured	299	1 (0.3)	
All	Placebo	643	26 (4.0)	and the second second second
	Vepured	764	2 (0.3)	(P < .001)

*Overall comparison p value for Generalized Linear mixed model with binary response and Farm as random effect. Results are statistically significant if the P value <.05.

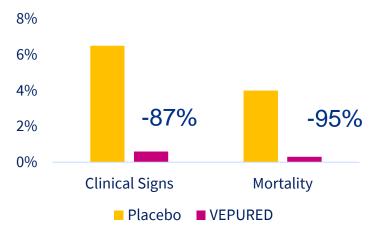
Clinical signs

Table 5. Summary of animals showing Edema Disease Clinical Signs.

Farm	Treatment	Number of pigs (n)) Number of pigs with Edema Disease Clinical Signs (%)		
	Placebo	223	8 (3.6)		
1	Vepured	224	1 (0.4)		
	Placebo	120	7 (5.8)		
2	Vepured	120	0 (0)		
3	Placebo	120	11 (9.2)		
3	Vepured	121	0 (0)		
	Placebo	180	16 (8.9)		
4	Vepured	299	4 (1.3)		
All	Placebo	643	42 (6.5)	(P < .001)	
	Vepured	764	5 (0.6)	(P < .001)	

Overall comparison P value for Generalized Linear mixed model with binary response and Farm as random effect. Results are statistically significant if the P value <.05.

Animal and Veterinary Sciences 2018: 6(6): 95-101 http://www.sciencepublishinggroup.com/j/ws doi:10.1164/sj.aws.20180606.11 ISSN: 2328-5842 (Print), ISSN: 2328-5850 (Online)



A Multicenter, Randomized Field Trial on the Efficacy and Safety of VEPURED[®], A New Vaccine Against Edema Disease in Pigs

Eva Perozo[†], Joaquim Mallorqui^{†, *}, Ainhoa Puig, David Sabaté, Laura Ferrer-Soler, Ricard March

VEPURED[®] vs PLACEBO

Immunity against VTEC

Vaccination to increase the resistance against VTEC

Trial on 4 commercial farms with oedema problems

Animal and Veterinary Sciences 2018; 6(6): 95-101 http://www.sciencepublishinggroup.com/j/avs doi:10.11648/j.avs.20180606.11 158N: 2328-5842 (Prim); ISSN: 2328-5850 (Online)

110

108

106

104

102

A Multicenter, Randomized Field Trial on the Efficacy and Safety of VEPURED[®], A New Vaccine Against Edema Disease in Pigs

Eva Perozo⁺, Joaquim Mallorqui^{+, +}, Ainhoa Puig, David Sabaté, Laura Ferrer-Soler, Ricard March

VEPURED[®] vs PLACEBO

ScienceP(

icience Publishing Group

Wight increase

Table 6. Evolution of animal weights in farms with clinical Edema Disease (Mean ± SD).

Farm	Treatment	d-1	d28	d42	d115	End of fattening
1	Placebo	2.26 ± 0.54	8.66 ± 1.52	13.98 ± 2.61	64.69 ± 11.2	101.44 ± 15.24
	Vepured	2.29 ± 0.58	8.62 ± 1.81	14.01 ± 3.15	66.69 ± 10.99	105.42 ± 13.76
2	Placebo	2.04 ± 0.45	8.87 ± 1.73	13.87 ± 2.66	62.90 ± 9.07	109.84 ± 11.12
	Vepured	2.05 ± 0.45	9.20 ± 1.78	14.25 ± 2.42	65.84 ± 7.92	113.27 ± 11.89
3	Placebo	1.82 ± 0.46	6.5 ± 1.35	14.61 ± 2.71	59.42 ± 9.55	97.67 ± 13.63
	Vepured	1.84 ± 0.5	7.23 ± 2.01	14.69 ± 3.27	62.47 ± 9.59	101.46 ± 12.96
3	Placebo	1.95 ± 0.37	7.05 ± 1.18	9.57 ± 2.01	57.22 ± 8.5	110.93 ± 13.77
4	Vepured	1.98 ± 0.37	6.93 ± 1.16	10.47 ± 1.85	60.27 ± 9.17	115.45 ± 13.60
All	Placebo	2.01 ± 0.47	7.71 ± 1.69	12.67 ± 3.28	60.62 ± 9.96	105.54 ± 14.81
	Vepured	2.03 ± 0.49	7.77 ± 1.82	13.04 ± 3.21	63.5 ± 9.81	109.64 ± 14.35
	P value [*]	0.584	0.799	0.009	< .001	< .001

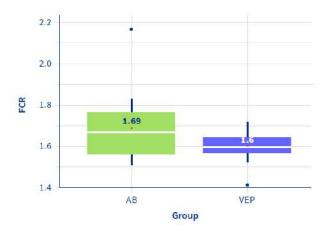
SD: standard deviation

* P values for overall group comparison at fixed times using a Linear mixed model with farm as a random effect. Results are statistically significant if the P value

<.05.

Weights end of fattening (kg)

Streptococcus suis


It has been reported that coinfections with other pathogens can influence the severity of Streptococcus suis problems¹

HIPRA

Antibiotic reduction in a farm with *Streptococcus Suis* diagnosis by vaccinating against VT2E

Annelies, M.¹, De Jong, E.¹; Claeyé, E.¹; Barba-Vidal, E.²; García, G.²; Boix, O.²; Matthijs, W.¹; Van Poucke, S.⁴. ¹Higra Benelux ²HIRPA HQ, Amer (Spain) ³DSM Nutritional Products ⁴Synt ⁴Corresponding author: gonzalo.garcia@hipra.com

The production cost per piglet at 36.6 kg was reduced by \in 1.32 in the VEPURED[®] group

On a farm with *S.suis* problems and positive to Verotoxin:

VEPURED°

VS

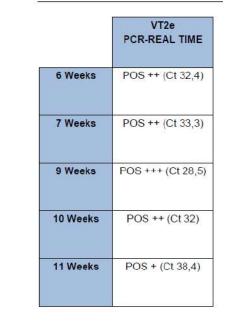
350 mg/kg amoxicillin in feed after weaning

1. Obradovic *et al.* 2021. Vet Res Mar. 20;52(1):49. doi:10.1186/s13567-021-00918-w

HIPRA

Subclinical disease

Farm from South Korea (850 sows) VT2e rtPCR (Verocheck)→ Positive Without clinical signs or high mortality



Recombinant Verotoxin 2e (Vt2e) vaccine reduces the cost of medicine on a farm with subclinical swine Oedema Disease

Byun, J.1"; An, K.1; Noh, H.1; Seo, S.1; Barba, E.2; García, G.1

1 HIPRA Korea inc. 2 HIPRA HQ Spain

MOLECULAR DIAG.

HIPRA

Subclinical disease

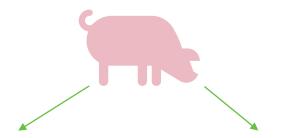
Results

Fig 1. Monthly cost of all antibiotics and additives over time

HIPRA

Recombinant Verotoxin 2e (Vt2e) vaccine reduces the cost of medicine on a farm with subclinical swine Oedema Disease

Byun, J.^{1*}; An, K.¹; Noh, H.¹; Seo, S.¹; Barba, E.²; García, G.¹


1 HIPRA Korea inc. 2 HIPRA HQ Spain

Monthly expenses (Unit: millions KRW)	Prevaccination	VEPURED®	P-value	
Antibiotics in feed	116	104	0.32	
Injectable Antibiotic**	502	269	0.006	
Additives	190	261	0.17	
Additives & all antibiotics*	809	634	0.02	
Total	1.556	1.532	0.21	

Even on a farm without clinical signs of oedema, production costs were lower after vaccination, especially because of the reduction of injectable antibiotics

Conclusions

Reduce the number of pathogenic E. coli

Protect against infection and secondary diseases

Multifactorial approach

Management/Facilities

Inmunity

Conclusions

Temperature

HIPRA

Building Immunity for a Healthier World